3,880 research outputs found

    Computational Thinking and Its Mathematics Origins through Purposeful Music Mixing with African American High School Students

    Get PDF
    Computational thinking (CT) is being advocated as core knowledge needed by all students—particularly, students from underrepresented groups—to prepare for the 21st century (Georgia Department of Education, 2017; Smith, 2016, 2017; The White House, 2017; Wing, 2006, 2014). The K–12 Computer Science Frameworks (2016), written by a national steering committee, defines CT as “the thought processes involved in expressing solutions as computational steps or algorithms that can be carried out by a computer” (p. 68). This project investigated current national introductory CT curricula and their related programming platforms used in high schools. In particular, the study documents the development, implementation, and quantitative outcomes of a purposeful introductory CT curriculum framed by an eclectic theoretical perspective (Stinson, 2009) that included culturally relevant pedagogy and critical play through a computational music remixing platform known as EarSketch. This purposeful introductory CT curriculum, designed toward engaging African American high school students, was implemented with a racially diverse set of high school students to quantitatively measure their engagement and CT content knowledge change. The goal of the project was to increase engagement and CT content knowledge of all student participants, acknowledging that what benefits African American students tends to benefit all students (Hilliard, 1992; Ladson-Billings, 2014). An analysis of the findings suggests that there was a significant increase in student cognitive engagement for racially diverse participants though not for the subset of African American students. Affective and conative engagement did not significantly change for racially diverse participants nor for the African American student subset. However, both the racially diverse set of students’ and their subset of African American students’ CT content knowledge significantly increased. As well, there was no significant difference between African American students and non-African American students post-survey engagement and CT content knowledge post-assessment means when adjusted for their pre-survey engagement and pre-assessment knowledge respectively. Hence, showing that purposeful music mixing using EarSketch designed toward African American students benefitted a racially diverse set of students in cognitive engagement and CT content knowledge and the African American subset of students in CT content knowledge. Implications and recommendations for further study are discussed

    Commissioner of Internal Revenue v. Lundy: Transforming An Intended Benefit Into a Handicap ?

    Get PDF
    This Note analyzes the Court\u27s decision in Lundy. Part II examines the relevant statutory provisions concerning the power granted to the Tax Court and federal district court. Part III addresses the facts, procedural history, and holding of the Court. Part IV(A) analyzes the holding of the case. Part IV(B) addresses several dissenting arguments, and contends that the Court could have clarified this murky area of the law by adopting the holding of Miller v. United States

    IDEF3 formalization report

    Get PDF
    The Process Description Capture Method (IDEF3) is one of several Integrated Computer-Aided Manufacturing (ICAM) DEFinition methods developed by the Air Force to support systems engineering activities, and in particular, to support information systems development. These methods have evolved as a distillation of 'good practice' experience by information system developers and are designed to raise the performance level of the novice practitioner to one comparable with that of an expert. IDEF3 is meant to serve as a knowledge acquisition and requirements definition tool that structures the user's understanding of how a given process, event, or system works around process descriptions. A special purpose graphical language accompanying the method serves to highlight temporal precedence and causality relationships relative to the process or event being described

    Strategic Managerial Responses to Critical Service Events in Restaurants

    Get PDF
    Inappropriate managerial responses to critical service events (CSEs) in restaurants contribute to an increased rate of customer defection and restaurant failure. Some restaurant managers lack employee-training strategies that may enhance service recovery from CSEs. This case study explored what employee-training strategies participants deemed essential to enhance service recovery to CSEs. The population for this study was restaurant managers from a U.S. regional chain in South Carolina with at least 3 years of employee-training experience. Organizational learning theory was the conceptual framework for this study. Data collection included semistructured face-to-face interviews with restaurant managers and an exploration of company archival documents related to CSEs. Using Yin\u27s 5 step data analysis method (i.e. compiling, disassembling, reassembling, interpreting, and concluding), 3 major themes emerged: customer needs and requests, which included the importance of listening to customers and affirming their requests; employee actions and attitudes, which included opinions about the ideal employee demonstrating a great attitude when correcting mistakes; and training, which included multiple methods to improve employee performance through continuous training. Recommendations for action included how to instruct employees to listen, apologize, solve problems, and thank customers. Restaurant managers may apply these results to improve service quality and customer experiences. Social implications include strategies to create positive experiences for employees and customers enhancing community employment and business sustainability

    Cleveland and Milwaukee\u27s Free Market Solution for the Pedantic Heap(s) of Sophistry and Nonsense That Plague Public Education: Mistakes on Two Lakes?

    Get PDF
    This Comment summarizes the existing comprehensive analysis of federal and state constitutional challenges to voucher programs. It examines how the groundbreaking Cleveland and Milwaukee plans addressed these critical issues, and makes suggestions for legislators wishing to implement similar plans in their states. The suggestions are intended to: 1) facilitate the passage of such measures; 2) mitigate the most divisive arguments of voucher opponents; 3) allay the fears of the legislators and their constituents; and 4) fortify such plans against probable legal challenges

    Population Structure and Mating Dynamics in the Social Amoeba Dictyostelium discoideum

    Get PDF
    Successfully investigating the evolution and maintenance of sex and mating systems can often have as much to do with choosing the right study system as it has to do with asking the right questions. Dictyostelium discoideum has long been the focus of researchers interested in understanding a number of biological processes, such as motility, chemotaxis and development. More recently, attentions have shifted to include questions about the evolution of social and sexual interactions both within and between species. The D. discoideum life cycles, both asexual and sexual, are uniquely social, each requiring a costly sacrificial act. This offers an ideal system for exploring questions about kin recognition, conflict, and the evolution of multicellularity, as well as the evolution of differential sexual investment and mating types. This dissertation focused on understanding the phylogenetic and geographical relationships between clones in D. discoideum and identifying the social and selective pressures that shape its mating system. I introduce this mating system in Chapter 1. In Chapter 2, I investigated genetic variation and population structure in D. discoideum to identify possible factors that could affect interactions between clones. I used DNA sequence data and phylogenetic techniques to show that though D. discoideum clones form a monophyletic group, there is evidence of genetic differentiation among locations (FST = 0.242, P = 0.011), suggesting geographic or other barriers limit gene flow between populations. In chapter 3, I again looked for population structure, this time concentrating on gamete size and sex ratio, to understand selective pressures maintaining multiple mating types in D. discoideum. Evidence suggests that both balancing selection and drift are likely acting on the D. discoideum mating system. I found no differences in gamete size across the three mating types and also no genetic differentiation across three wild populations at the mating type locus. However, I found that mating type frequency varied across these populations, likely due to drift. Chapter 4 focused on understanding the social dynamics of mating in D. discoideum. During macrocyst formation, two cells of complementary mating types fuse to form a zygote. This zygote then consumes hundreds of surrounding amoebae, likely clones of the original two cells, for use as protection and food. I varied the frequencies at which two clones of differing mating types interacted to investigate the possibility that one mating type cheats another by differentially contributing to the cannibalized cells. Contrary to previous claims that mating type I induces mating type II, coercing it to contribute disproportionately more of these cannibalized cells during macrocyst production, I found that these cells are likely contributed relative to their frequency in the population, regardless of mating type. However, I did find evidence for differential contribution to macrocyst production between some pairs of clones, suggesting that cheating can happen between partners during sex, but is rare and clone-specific. Overall, these studies looked for evidence of underlying population structure in D. discoideum that could impact our understanding of social and sexual interactions in this species. I also applied questions about the maintenance of sex usually only asked in two-sex systems to the unique social sexual interactions within D. discoideum in order to expand the understanding of how mating systems evolve and are maintained in nature. I developed and used new tools and techniques for observing the processes important to understanding this unique system and identified genetic and social factors that could impact how individuals interact during both the asexual and sexual life cycles

    Selecting ground-motion models developed for induced seismicity in geothermal areas

    Get PDF
    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysi

    Recent and future developments in earthquake ground motion estimation

    Get PDF
    Seismic hazard analyses (SHA) are routinely carried out around the world to understand the hazard, and consequently the risk, posed by earthquake activity. Whether single scenario, deterministic analyses, or state-of-the art probabilistic approaches, considering all possible events, a founding pillar of SHA is the estimation of the ground-shaking field from potential future earthquakes. Early models accounted for simple observations, such that ground shaking from larger earthquakes is stronger and that ground motion tends to attenuate rapidly away from the earthquake source. The first ground motion prediction equations (GMPEs) were, therefore, developed with as few as two principal predictor variables: magnitude and distance. Despite the significant growth of computer power over the last few decades, and with it the possibility to compute kinematic or dynamic rupture models coupled with simulations of 3D wave propagation, the simple parametric GMPE has remained the tool of choice for hazard analysts. There are numerous reasons for this. First and foremost GMPEs are robust and reliable within the model space considered during their derivation, and many can be extrapolated to a degree beyond this space with some confidence. With ever expanding datasets and improved metadata the models are becoming more and more useful: a range of predictor variables are now used, describing the source, path and site effects in detail. GMPEs are also relatively easy to implement and computationally inexpensive. Despite this, probabilistic hazard calculations using GMPEs and accounting for uncertainties can still take several days to run. Full simulation-based approaches, therefore, clearly lie outside the computation budget afforded to most projects. As well as the ever expanding list of predictor variables, other recent developments have also significantly improved the predictive power of GMPEs. This has allowed them to maintain their advantage over more `physical' simulation techniques. Possibly the biggest aspect of this is not related to the median ground-shaking field, but rather its variability (and correlation in space and with oscillator period). This is a major advantage of empirical as opposed to simulation approaches, which typically struggle to replicate the covariance of input variables and, consequently, the variance of the ground motion. In this article we summarize some of the recent advances in ground motion prediction equations, including their application in SHA. We begin with a summary of the current state-of-the-art, then introduce the main additional predictor variables now used. Region- and event-type (tectonic or induced) specific predictions and adjustments are then discussed. Additional topics include advances in estimating ground-motion variability (epistemic and aleatory) and expanding GMPEs to predict other intensity measures or waveform features. The article concludes with a discussion on the path forward in earthquake ground motion prediction
    • …
    corecore